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Abstract

Purpose – To numerically model forced convection heat transfer over arrays of solder balls.

Design/methodology/approach – The characteristic based split (CBS) scheme has been used to
solve the incompressible Navier-Stokes equations on unstructured meshes.

Findings – The results show an increase in heat transport with increase in Reynolds numbers.
A significant change in heat transfer is also noticed with change in angle of attack.

Originality/value – The presented results will be useful in designing cooling systems for electronic
components.
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1. Introduction
Owing to increasing demand of high density and high frequency applications, thermal
design of electronic devices has become a challenging area of research. An interesting
example is given by the idea to use both sides of printed circuit boards (PCB) for its
cooling. The opportunity to do so is given by thermal vias, designed to increase the
thermal conductivity of printed wiring boards (PWB) (Bar-Cohen et al., 2001). However,
the effectiveness of these systems depends not only on the heat conducted through the
board, but obviously on the heat convected/radiated away from it. As the temperature
of an electronic system increases, forced convection is certainly one of the best ways of
cooling it.

The Emerald Research Register for this journal is available at The current issue and full text archive of this journal is available at

www.emeraldinsight.com/researchregister www.emeraldinsight.com/0961-5539.htm

The authors gratefully acknowledged the support of EPSRC via grant GR/R29321/01.

Forced
convection heat

transfer

73

Received April 2003
Revised November 2003

Accepted May 2004

International Journal for Numerical
Methods in Heat & Fluid Flow

Vol. 15 No. 1, 2005
pp. 73-95

q Emerald Group Publishing Limited
0961-5539

DOI 10.1108/09615530510571967



In modern day electronic cooling and thermal design of PCB, numerical techniques
are largely employed (Bar-Cohen et al., 2001; Nakayama et al., 2001; Watson et al., 2001;
Shidore et al., 2001). Most of the numerical simulations available are performed using
commercial codes. However, as the geometries involved in this type of applications
become more complicated, commercial codes show deficiencies in achieving accuracy
and speed. For this reason simplified models have been usually employed, which are
inadequate to predict heat transfer with necessary accuracy. An interesting way to
approximate the flow through an electronic device is to approximate the device as a
porous medium and to look at the overall heat transferred from the medium to the fluid
(Zhao and Lu, 2002; Heindel et al., 1996). However, this approach has not been
characterized properly and more work is needed to understand the comparison
between macroscopic and microscopic approaches to the solution of porous medium
flows (Nakayama and Kuwahara, 2000). In the meantime, the latest developments in
numerical schemes for the solution of the complete Navier-Stokes equations can be
employed to improve the thermal design of electronic packaging. Recently, a fully
explicit version of the well known characteristic-based-split (CBS) algorithm has been
proposed by the authors for the solution of isothermal flow problems (Nithiarasu, 2003;
Nithiarasu et al., 2004). In this form the algorithm was proved to be accurate and
efficient on unstructured meshes. In fact, for three-dimensional problems, such as those
encountered in the present study, the unstructured mesh based explicit CBS solver is
an excellent choice. Although structured and semi-unstructured meshes are widely
employed in the solution of incompressible flows, the use of unstructured meshes is
inevitable if the geometry is really complex.

The unstructured mesh methods are very well developed for compressible flows and
several schemes are around for small and large scale calculations (Zienkiewicz and
Taylor, 2000; Löhner, 2001). The success of these schemes is partially due to explicit time
discretization of the equations along with dual time stepping methods. Extra additional
dissipation to treat oscillations is generally part of these schemes. Several such schemes
perform well with very high speeds but inefficient for low speed flows. Therefore often
alternate schemes have been developed to solve incompressible low speed flows. The
projection and velocity correction schemes are such methods designed to solve low
speed incompressible flows (Chorin, 1967; Gresho and Sani, 1999; Comini and Giudice,
1972; Ramaswamy et al., 1992). However, many of the projection and velocity correction
schemes require some form of implicit solution to the pressure Poisson equation. Explicit
CBS scheme, however, avoids the solution of matrices arising from the discretization of
Poisson type equations by introducing the artificial compressibility (AC) concept
together with velocity correction (Nithiarasu, 2003). The objective of the present work is
to explain in detail the steps involved in the explicit CBS scheme for non-isothermal
incompressible flow problems and to employ the scheme to solve a complicated problem
of forced convection heat transfer from solder balls mounted on a circuit board. The
analysis is presented for different Reynolds numbers within the laminar flow regime and
different directions of the flow approaching the heat sources.

In Section 2, the Navier-Stokes equations in their conservation form are presented
followed by Section 3, which describes the fully explicit CBS scheme for non-isothermal
flow problems. In Section 4, some important features of the fully explicit scheme,
including the calculation of AC parameter, are explained. The validation of the
three-dimensional non-isothermal model is given in Section 5 for forced convection heat
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transfer from a single hot sphere placed in a cold stream of air. The results of forced
convection heat transfer from a cluster of hot solder balls are presented in Section 6.
Finally, section 7 concludes the present study.

2. The Navier-Stokes equations
Fluid flow through electronic systems can be accurately described using the
Navier-Stokes equations for incompressible non-isothermal Newtonian flow. These
equations in a Cartesian domain can be written in non-dimensional conservative form,
for forced convection problems as

›W

›t
þ

›Fi

›xi
2

›Gi
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¼ 0 ð1Þ
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The above set of equations state the conservation of mass, momentum and energy,
respectively. It should be noted here that the body forces acting on the fluid are
assumed to be negligibly small in comparison with the inertial and viscous forces. In
the model presented, neither thermal viscous dissipation due to the external forces nor
body forces have been considered.

The non-dimensional form of deviatoric stress in the momentum equation,
according to the assumption of newtonian fluid, is

tij ¼
1

Re

›ui
›xj

þ
›uj
›xi

2
2

3

›uk
›xk

dij

� �

where dij represents the Kroneker delta. In all the above equations, the following scales
have been employed to obtain the non-dimensional form

xi ¼
x*i
L
; ui ¼

u*i
u1

; p ¼
p*

ru2
1

; t ¼
t*u1
L

; ð2Þ

T ¼
T* 2 T*c

T*h 2 T*c
; Re ¼

u1L

n
; Pr ¼

n

a
ð3Þ

where an asterisk is used for the dimensional variables, a is the thermal diffusivity of
the fluid, n its kinematic viscosity, r its density, xi the position vector components, t the
time, ui the velocity components, p the pressure and T the temperature of the fluid, T*h
and T*c are, respectively, the hot and cold reference temperatures, L the characteristic
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length of the problem considered, and u1 is a reference velocity. The non-dimensional
parameters Re and Pr represent the Reynolds and Prandtl numbers, respectively.

It should be pointed out here that for incompressible flows, the density variation is
small and therefore, the conservation of mass turns into an equation satisfied by
divergence free velocity field. However, in the AC form of the algorithm a fictitious
form of density variation is retained in the continuity equation to solve the equations
fully explicitly.

3. The CBS scheme
In this section, the CBS scheme is briefly discussed. As mentioned earlier the explicit
form of the algorithm is employed in this paper. The fully explicit form needs no
simultaneous solution to the equations arising from matrices and it is much easier to
handle than the semi-implicit forms. However, for problems with large source type
terms, the present fully explicit form often does not give reasonable solution and
semi-implicit form is necessary in such situations.

We now describe the CBS algorithm and its application to the solution of
three-dimensional incompressible non-isothermal flow problems. We first define the
mass flow fluxes as

Uj ; ruj ð4Þ

rewrite the equation for mass conservation in the form

›r

›t
¼

1

c 2

›p

›t
¼ 2

›Uj

›xj
ð5Þ

where c is the speed of the acoustic wave in the fluid considered. The momentum
conservation and the energy equations become, respectively,
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Note that for incompressible flows the acoustic wave travels at a very high speed and
therefore c 2 !1 in equation (5). However, in AC schemes, an artificial finite value of
c 2 may be used and generally calculated from velocity and temperature fields
(Nithiarasu, 2003; Malan et al., 2002).

The basic idea behind the CBS scheme comes from the split procedure devised by
Chorin (1967). However, the time discretization using a characteristic-Galerkin
procedure leads to the following equation in which the stabilizing terms appear
(Zienkiewicz and Taylor, 2000).

Unþ1
i 2 Un

i ¼ Dt 2
›
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ðUiujÞ

n 2
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›
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� �n

where the pressure term is evaluated at a time t n þ u2Dt and is given by
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›pnþu2

›xi
; u2

›pnþ1

›xi
þ ð1 2 u2Þ

›pn

›xi
ð8Þ

where 0 # u2 # 1 (u2 ¼ 0 for the fully explicit form of the scheme, while u2 . 0 for the
semi-implicit form).

At this point the splitting procedure is introduced to obtain a fictitious momentum
equation by dropping the pressure terms. The solution of this equation represents the
first step of the algorithm. In the second step the pressure term is evaluated from a
pressure continuity equation. Using the calculated pressure, the intermediate velocities
obtained in the first step are corrected in the third step. For thermal flow problems,
such as the one considered in this work, the temperature is calculated in the fourth step
of the algorithm, as described below.

The calculation of the intermediate velocity is obtained in the first step from the
solution of the equation:

U*i 2 Un
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›
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� �n
þ
Dt 2

2
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� �� �n
ð9Þ

These velocities are corrected in the third step of the algorithm represented by the
equation:

Unþ1
i 2 U*i ¼ Dt

›pn

›xi
þ

Dt 2

2
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›

›xk

›pn

›xi

� �
ð10Þ

note that u2 ¼ 0 for the explicit scheme. The second-order terms in the above equation
are presented to show the consistency of the present scheme. However, past experience
shows that the second-order term in equation (10) has very little effect on the stability
and accuracy of the CBS scheme. The pressure term in the above equation is calculated
in the second step of the algorithm, which can be obtained from equation (5), and
rewritten as

1

c2

� �n

ð pnþ1 2 pnÞ ¼ 2Dt
›Unþu1

i

›xi
: ð11Þ

However, Unþu1

i ¼ u1U
nþ1
i þ ð1 2 u1ÞU

n
i where 0:5 # u1 # 1; and using equation (10)

the following expression is obtained

Unþu1

i ¼ u1 U*i 2 Dt
›pn

›xi

� �
þ ð1 2 u1ÞU

n
i ð12Þ

which can then be substituted in equation (11) that represents the second step of the
algorithm

1
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� �n

ðpnþ1 2 pnÞ ¼ 2Dt u1
›U*i
›xi

þ ð1 2 u1Þ
›Un

i

›xi
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þ

Dt 2

2
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� �
ð13Þ

In the fourth step of the algorithm, the temperature field is calculated from the energy
conservation equation disctretized in time using the same characteristic-Galerkin
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procedure employed for the momentum equation. The semi-discrete form of the
equation is

T nþ1 2T n ¼ Dt 2
›

›xi
ðTuiÞ

n þ
›

›xi

1

RePr

›T n
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� �� �
þ

Dt 2

2
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›

›xk

›

›xi
ðTuiÞ

n

� �
ð14Þ

The above semi-discrete equations can now be approximated in space using the
standard Galerkin finite element procedure. Further details on the CBS scheme,
especially the semi- and quasi-implicit schemes, can be found in several other
published works (Zienkiewicz and Taylor, 2000; Nithiarasu et al., 2004; Nithiarasu,
2002, 2003; Massarotti et al., 1998).

3.1 Spatial discretization
The computational domain is subdivided into a mesh of tetrahedral elements. Within
an element each variable is approximated by a linear function, which can be expressed
in terms of the variable value at each of the three nodes of the element:

f ¼
X4

n¼1

Nn
�fn ¼ Nf ð15Þ

where Nn are the shape functions at each node n and �fn is the value of the generic
unknown f (p, Ui, and T) at the node n. Using the Galerkin procedure, the weak form of
the governing equations is obtained by weighting each of the conservation equations
by the same shape functions introduced above.

Step 1: weak form of the intermediate velocity equation

Z
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� �
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Z
V
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ð16Þ

where V refers to the entire computational domain and G to its boundary. In the above
equation t*i indicates the part of the traction corresponding to the deviatoric stress
while ni are the components of the outward normal to the boundary G. Higher order
derivative terms, obtained from the integration by parts of the stabilization terms are
neglected.

Step 2: weak form of the pressure equation

Z
V
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� �n
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Z
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Z
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in which terms multiplying u1 are integrated by parts, and the artificial parameter b
replaces the speed of sound c of the governing equations.

Step 3: weak form of the velocity correction equation

Z
V

NT Unþ1
i 2 U*i

� �
dV ¼ 2Dt

Z
V

NT ›NT

›xi
ðpn dVÞ

� �
þ

Z
G

NTt**
i ni dG ð18Þ

Note that the second-order pressure terms are neglected in the above equation to save
computational time. In equation (18), boundary integral includes the traction
corresponding to the pressure term that was removed from the first step.

Step 4: weak form of the energy equation

Z
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NTðT nþ12T nÞdV¼2Dt

Z
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›xi
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dV
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Z
G
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� �nð19Þ

where qi represents the non-dimensional heat flux. The other boundary terms in the
equation above are derived from the integration by parts of the second-order
derivatives in the partial differential equations.

3.2 Solution procedure
The equivalent system of algebraic equations is obtained by substituting the
approximated dependent variables in the weak form of the conservation equations.
The resulting system of algebraic equations can be written in a matrix form as

Step 1: discretized intermediate velocity equation

M U*i 2 Un
i

� �
¼ 2Dt½ðCUi þKtUi 2 fÞ2 DtðKuuiÞ�

n ð20Þ

Step 2: discretized pressure equation

Mpðp
nþ1 2 pnÞ ¼ Dt G ð1 2 u1ÞU

n
i 2 u1U*i

� �
2 u1Hpn 2 fnp

h i
ð21Þ

Step 3: discretized velocity correction equation

MUnþ1
i ¼ MU*i 2 DtGpn ð22Þ

Step 4: discretized energy equation

MTnþ1 ¼ MTn 2 Dt½CT2HTTþ fT þ DtKuT�
n ð23Þ

where
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M ¼

Z
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Z
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Re
I 0 2

2
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In above set of matrices, B is given as:

B ¼ SN ð24Þ

where S is an appropriate strain matrix or operator deduced from equation
(Zienkiewicz and Taylor, 2000). For a general three-dimensional problem m and B are
given as

m ¼

1

1

1

0

0

0

2
66666666664

3
77777777775
; B ¼

2

2

2

1

1

1

2
66666666664

3
77777777775

It is important to remark here that equal order interpolation functions are employed for
all field variables.

4. Fully explicit scheme
As mentioned before, the fully explicit form of the CBS algorithm is obtained by
substituting u2 ¼ 0 and 1

2 # u1 # 1 into equation (13). At this point it becomes
necessary to solve equation (13) explicitly, and therefore, c needs to be replaced by an
AC parameter b as given in equations (17) and (21). In general, b is calculated from
local velocity and temperature distribution and mesh size. This gives a critical time
step Dt ¼ h=ðbþ jujÞ; where h is the local element size.

4.1 AC parameter b and local time step
In order to cover the whole spectrum of flow conditions encountered incompressible
flow domain, it is essential to define a value of b which is not only suitable for different
Reynolds numbers, but should also take care of different flow regimes (diffusion and
convection dominated) that may appear in the domain at a particular Reynolds
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number. As the b value is local, an appropriate local time step is needed to account the
local stability limits. It is therefore essential to include the local time step calculations
as part of the scheme.

In this work, the following relations for b and Dt were found appropriate for faster
and accurate solutions (Nithiarasu, 2003; Nithiarasu et al., 2004)

b ¼ maxð1; vconv; vdiff; vthermÞ ð25Þ

where 1 is a constant (taken as 0.5 in this study), vconv is the convective velocity, vdiff is
the diffusion velocity and vtherm is the thermal velocity. These velocities can be
calculated from the following non-dimensional relations

vconv ¼
ffiffiffiffiffiffiffiffi
uiui

p
ð26Þ

vdiff ¼
2

hRe
ð27Þ

vtherm ¼
1

RePrh
ð28Þ

where h is the local element size, Re is the Reynolds number and Pr is the Prandtl
number. It should be noted that for pre-conditioned AC schemes, the convection and
diffusion velocities are calculated differently (Malan et al., 2002).

The local element size at a node i is defined as

hi ¼ minð3Volume=Opposite face areaÞie ð29Þ

in three-dimensional cases (four noded tetrahedral elements). In the above equation, the
minimum value is selected among the number of elements, ie, connected to node i.

The local time step Dt is calculated as (in terms of non-dimensional quantities)

Dt ¼
h

uconv þ b
ð30Þ

The calculated Dt that is multiplied by a safety factor varying between 0.5 and 2.0
depends on the problem and mesh used. It is important to note that this is the only
parameter tuned in the present study.

5. Heat transfer from a single hot sphere
In this section, the developed CBS-AC scheme is validated for heat transfer analysis on
a problem of forced convection from a hot sphere. This problem presents several
aspects that still challenge researchers, and has been widely investigated both
experimentally and theoretically (Whitaker, 1983; Clift et al., 1978; Feng and
Michaelides, 2000; Dandy and Dwyer, 1990; Yuge, 1960).

The flow behind a single sphere in a uniform stream becomes unsteady as the
Reynolds number based on the sphere’s diameter exceeds 250. However, for smaller Re,
a recirculation zone appears behind the sphere when the Reynolds number is over 20.

In order to solve the problem of forced convection from a hot sphere, a single sphere
is assumed to be placed in a rectangular domain of 25 diameters in length. The centre
of the sphere is assumed to be located at 5 diameters from the centre line of the side
boundaries along the flow and from the inlet. The centre of the sphere is therefore 20
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diameters away from the exit of the channel. The sphere is assumed to be hotter than
that of the air flowing into the domain and no-slip velocity boundary conditions are
imposed on the sphere surface. An uniform flow is assumed at the inlet. Far field
boundary conditions are imposed to the lateral sides of the channel while no boundary
conditions are specified at the exit of the channel.

The results, obtained after the necessary mesh sensitivity analysis, are presented in
terms of the heat and fluid flow quantities of interest in Table I. The speed and
accuracy of the CBS-AC scheme are discussed in detail by Nithiarasu (2003) and not
presented here for the sake of brevity.

The calculation of the average Nusselt number, Nu, has been performed according
to the procedure described in Section 6. Table I presents the average Nusselt number
on the sphere surface for different Reynolds numbers. The results are compared to
those obtained using the experimental (Yuge, 1960; Whitaker, 1983) and numerical
(Feng and Michaelides, 2000) procedures. The agreement between the present and
existing results are excellent. Plate 1 shows the isotherm distribution in the vicinity of
the sphere at a Reynolds number of 200.

In Figure 1, coefficient of pressure, Cp, values calculated along the symmetry plane
in the flow direction is compared with those available from the literature (Rimon and

Re Yuge (1960) Whitaker (1983) Feng and Michaelides (2000) Present

50 5.4860 5.1764 5.4194 5.0678
100 6.9300 6.6151 6.9848 6.4693
200 8.9721 8.7219 9.1901 8.4943

Table I.
Forced convection from a
hot sphere. Average
Nusselt number
distribution for different
Reynolds numbers

Plate 1.
Isotherms and surface
mesh near the surface of
the sphere
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Cheng, 1969; Gülçat and Aslan, 1997) for two different values of the Reynolds number.
As seen an excellent agreement between the present and literature results has been
obtained.

6. Forced convection heat transfer from solder balls
The problem considered in this section concerns the simulation of heat and fluid flow
over an array of hot spherical solids resembling solder balls attached to a PCB. Two
different arrangements, 25 in-line (5 equally spaced) and 41 staggered partial spheres
are considered. The solder balls are considered to be partial spheres, whose centres lie
on the horizontal plane (x-z) as shown in Figure 2. These solder ball arrangement is
obtained by cutting the spheres with the horizontal wall (board) on which the balls are
placed. The diameter of the spheres is considered to be equal to one, and the distance
between the ball centres and the plane that represents the circuit board is equal to 0.35,
as can be evinced from Figure 2(a). The same figure shows an example of the staggered
arrangement considered (Figure 2(b)). This staggered arrangement is obtained by
introducing another sphere at the centre of the space between four in-line spheres.

Figure 1.
A comparison of the

coefficient of pressure, Cp,
for different Reynolds

numbers
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Figure 2.
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The flow is assumed to enter the channel from a vertical section (plane y-z) placed six
diameters upstream the the centres of the first column of spheres (Figure 2(a)). The
velocity at the inlet is always assumed to be unity in magnitude, but its direction (angle
of attack) has been allowed to vary. The flow direction at the inlet section, although
always parallel to the vertical sides of the domain (x-y plane), has been varied with
respect to the x-z plane as shown in Figure 3. Three different inlet directions have been
studied with 08, 108 and 208 angles of attack with respect to the x-z plane.

In all cases considered, no-slip velocity boundary conditions have been considered
for horizontal bottom wall and solder ball surfaces. All other surrounding boundaries
are assumed to be far field. In addition to the above flow conditions, different thermal
conditions are prescribed on different boundaries. The solder ball surfaces are always
assumed to be at a higher temperature ðT ¼ 1Þ than that of the incoming fluid ðT ¼ 0Þ:
All side boundaries are assumed to be adiabatic and at exist, free conditions are
assumed (no temperature boundary conditions).

Figure 3.
Planar sections of the

computational domain
(not scaled)
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The domain presented above, in both configurations, has been subdivided into finite
elements of unstructured meshes using an Delaunay type of mesh generator (Morgan
et al., 1999; Weatherhill et al., 2001). All meshes are refined near the solid walls where
strong gradients exist. The meshes used contained 250,372 nodes and 1,398,845
elements for the in-line arrangement and 237,911 nodes and 1,309,963 elements for the
staggered arrangement. These grids where found to be satisfactory from a
computational point of view after an appropriate mesh sensitivity analysis. Figure 4
shows an example of the surface mesh used for the in-line arrangement. The bottom
adiabatic wall, where the no-slip boundary conditions are assumed, is refined near the
spheres. For the staggered arrangement, the same density of nodes is assumed, and
this results in a smaller number of nodes and elements.

7. Results and discussion
In this section, flow and heat transfer results obtained for the problem considered in
Section 6 are presented. The results are mainly presented in terms of the heat transfer
and fluid flow quantities of interest. The distribution of velocity and temperature is
discussed in detail. The non-dimensional heat transferred from the spheres to the fluid
has been calculated from the computed temperature distribution. In particular, the
average Nusselt number for each sphere Nus is obtained, on the basis of its definition,
from the following integral:

Nus ¼
1

As

Z
A

ðNusÞp dA ¼
1

As

Z
A

7T ·n dA ¼
1

As

Z
A

›T

›n
dA ð31Þ

where As represents the surface area of each solder ball (s ¼ 1; . . . ; 25 for in-line and
s ¼ 1; . . . ; 34 for staggered arrangements) and n represents the out-going normal at
each node on the surface of the spheres. The integral term written above has been

Figure 4.
The finite element mesh
surface used for the in-line
arrangement
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calculated numerically by simply summing up the constant (linear elements) values of
the gradient in each surface element multiplied by its area.

The value of the Nusselt number Nus, calculated for each solder ball has been
calculated for different arrangements, Re and u and compared.

7.1 In-line arrangement
In the in-line arrangement considered, 25 spheres have been equally distributed on the
circuit board as shown in Figure 2. The isotherms calculated on a horizontal plane
surface on which the balls are placed are shown in Figure 5. This picture shows the
isotherms for Reynolds numbers from 100 to 300 and for different flow angles imposed
at the inlet of the computational domain.

With zero angle of attack, the isotherm looks simple and uniform in the flow
direction and convection from the ball cluster in the lateral direction is confined to a
small thermal boundary layer. However, as the angle of attack is increased, the
isotherms spread to a wider area around the cluster and showing a stronger convective
mixing. At higher angle of attacks, the isotherms spread out and reach the side
boundaries. This behaviour seen to has enhanced further as the Reynolds number is
increased. It is also noticed that the symmetry with respect to the central row of
spheres is preserved for all the angle of attacks and Reynolds numbers considered.

Although Figure 5 shows an idea of the qualitative patterns of temperature
distribution, it gives very little information about the heat transferred from the balls to
the fluid. In Figure 6 the average Nusselt number is shown for the central and lateral
rows of balls (see Figure 3(b) for “lateral” and “central” rows). It should be noted here
that the average Nusselt number for spheres in the row between “central” and “lateral”

Figure 5.
Isotherms for different Re
and inlet velocity angle for

the in-line arrangement
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Figure 6.
Nusselt number for
different Reynolds
numbers and inclination
angles
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rows are not shown in Figure 6 because it is practically the same as the values of the
Nusselt number on the “central” row. From Figure 6(a) it is clear that a significant drop
in heat transferred from the solder balls is noticed after the first column. A more
uniform reduction in heat transfer is noticed from the columns of balls towards down
stream. This is obviously due the flow obstruction caused by the columns of balls in
the front. However, this effect tends to decrease after the third column. In fact, the
fourth and fifth columns have practically the same values of Nu. As expected heat
transfer rate from the lateral rows is much higher than that of the central rows.

Figure 7.
Nusselt number for

different inclination angles
and Re ¼ 100

Figure 8.
Isotherms for different Re

and inlet velocity angle
respect to the horizontal
plane for the staggered

arrangement
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Figure 9.
Isotherms for different Re
and the inlet velocity
parallel to the horizontal
plane
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At lower Reynolds numbers and higher angle of attacks, however, the difference in
Nusselt number between the “central” and “lateral” rows are very small. In general, the
increase in flow angle increases the heat transfer rate. It is due to the increase in the
participation of balls at the middle of the cluster as seen from Figure 5. This effect
becomes more relevant, especially for higher values of Re. This information about the
influence of angle of attack can be very useful in this type of applications in which the
central part of electronic devices tends to be usually the hottest.

The increase in heat transfer rate with increase in the angle of attack is also evident
from Figure 7 in which the Nusselt number is plotted at Re ¼ 100 for different angles
of attack. In some cases the increase is more than 50 per cent.

7.1.1 Staggered arrangement. In the second arrangement considered, 16 more solder
balls are added to those considered in the previous example. A sketch of the staggered
arrangement is shown in Figure 3(b) for the sake of clarity. The boundary conditions
are same as the in-line arrangement discussed in the previous sub-section.

In this case, the interaction between the spheres is even more pronounced, because
of the higher degree of packaging obtained. In fact, the distance between the in-line
balls is kept the same as the previous case, but more solder balls are inserted in the
space that was left free between the balls.

Figure 8 shows the temperature contours (top view) for different Re and different
angles of u of the inlet flow. Figure 9 shows a sample three-dimensional figure showing
both temperature distribution and stream traces for zero angle of attack and for
different Reynolds numbers. It is seen that close packaging reduces the fluid
penetration and thus, the spread of the temperature contours. In fact, temperature
gradients in the zone occupied by the balls are very contained and this is shown by the
uniform almost isothermal area at the centre of the packaging. The flow encounters
several columns of balls in staggered arrangement and therefore, decelerates
drastically after the first column. By increasing the velocity of the fluid, it is obviously
possible to increase the temperature gradients between the balls and the cooling fluid.
As shown in the Figure 8, for an angle of 08 the cool fluid penetrates more into the
packaging as the velocity magnitude, and therefore, the Re increases. However, this is
achieved with a large increase of the energy consumed to speed up the fluid (this
energy grows at least with the square of the velocity). As in the case of in-line

Figure 10.
Nusselt number for
different Reynolds

numbers and u ¼ 08
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Figure 11.
Nusselt number for
different Reynolds
numbers and inclination
angles
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arrangement, the fluid penetration increases with both Reynolds number and angle of
attack. Note that for the same intensity of fluid penetration into the cluster, the
staggered arrangement needs much higher Reynolds number and angle of attack than
that of in-line arrangement.

The average Nusselt number variations with different Reynolds numbers and flow
angles for staggered arrangement of the solder balls are shown in Figures 10 and 11. In
these figures x-axis represents the column numbers of the ball cluster. For all legend
details given in the figure, see Figure 3(b). The symbols used for “central” and “lower”
rows are the same as balls from these rows do not fall onto the same column. For
example, the “central” row balls fall onto the columns with odd numbers, but “lower”
rows fall onto columns with even numbers.

As in the in-line arrangement the average Nusselt number obtained is smaller for
the balls at the centre of the cluster. The front column, as expected, gives the highest
heat transfer rate. As the angle of attack of incoming flow is increased, the
participation of the balls within the cluster increases and thus, the heat transfer.
However, the Nusselt numbers calculated are much smaller than that of the in-line
arrangement for the same Reynolds number and angle of attack. This shows the effect
of compact packaging.

8. Conclusions
The CBS scheme in its fully explicit form has been implemented and tested in
three-dimensions for non-isothermal problems. A three-dimensional practical heat
transfer problem has been successfully simulated using a fully explicit version of the
CBS algorithm. The heat transferred from different arrays of solder balls, as may be
found on a PCB, has been studied in the present work. The fully three-dimensional
analysis has shown the influence of the arrangement and of the direction of the inlet
flow on the heat transferred from the arrays of spherical balls used to describe the
solder balls. In both cases of solder ball arrangements considered, it has been shown
that, although the heat transferred can be increased by augmenting the inlet velocity,
similar effects can be achieved by simply controlling the angle of incidence of the
cooling fluid. The heat transfer rate from the solder balls increases by more than 50 per
cent in some cases when the angle of incidence of the flow direction over the board is
increased. This result could be used for new design of electronic cooling devices.
However, further study is needed in this case to fully characterize the influence of the
velocity direction and turbulence effects.
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